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Abstract—In spite of being one of the master guidelines
in the design and the architecture of the Internet, the
importance of the end-to-end argument has diminished over
the years. Nowadays, most network configurations include
some type of middlebox that manages or alters the traffic
exchanged by the ends. Examples include firewalls, NATs,
application layer gateways or load balancers. Although
these devices often provide important functions that are
essential to guarantee the security, efficiency or scalability
of the network, their use may imply the violation of the
end-to-end principle and introduce severe problems to
some applications and network services. The detection of
middleboxes presents unique difficulties, mainly because
they are designed to be transparent to end nodes. However,
the problem is not at all unapproachable. This paper
presents a novel technique that allows the detection of
intermediate devices between two end nodes, based on the
differences found between the packets that were originally
created by the sender, and the packets that were received
by the other end.

I. INTRODUCTION

The end-to-end principle has been one of the master
guidelines in the architecture of the Internet. However,
its importance has diminished over the years. Nowadays,
in most network configurations, it is very common to
find some type of intermediate device that manages
or alters the traffic exchanged by the ends. Examples
include firewalls, NATs, application-layer gateways or
load balancers. Such devices, also known as middleboxes,
typically provide important functions that are essential
to guarantee the security, efficiency or scalability of a
network, but their presence often violates the end-to-
end principle and introduces severe problems to some
applications and network services that were designed
under the assumption that network traffic flows virtually
unaltered from one end to the other. As a consequence,
the correct operation of services designed according to
the Client/Server model, or the relatively new peer-to-
peer scheme, may require applications to have certain
knowledge of the underlying transport and network lay-
ers, which constitutes another violation of an important
principle, the independence of protocol layers.

Due to their transparent mode of operation, the pres-
ence of middleboxes is not easy to detect, particularly at

the application layer. This may require users to be aware
of the existence of intermediate devices and make the
appropriate configuration adjustments in order to access
or provide a particular network service.

Although the detection of middleboxes has a wide
variety of applications, from network reconnaissance to
the improvement of the user experience in the access to
network services, there is a significant lack of research
on the area. Nevertheless, the problem is not at all
unapproachable. This paper presents a novel technique
for the detection of intermediate devices, through the
analysis of the differences between the network packets
generated on one end of a communication, and the
packets that were actually received at the other end.

The remainder of this paper is organized as follows.
Section II discusses the concept of middlebox, describing
some of their types, features and characteristics. Section
III presents our contribution to the field, introducing a
novel technique for the detection of middleboxes and
the tools and methodology that we used to produce a
working implementation of it. Section IV reports the
results of our experiments with the implementation.
Finally, section V presents our conclusions, and discusses
open questions and future work.

II. MIDDLEBOXES

This section discusses the concept of middlebox,
describing the most popular types and their possible
features and characteristics.

A. Middlebox modeling

Given the wide variety of intermediate devices and the
way they process and alter the packets that flow through
them, it seems convenient to have a way to model them
and express their characteristics in a formal manner.
Some authors propose models to represent specific types
of devices, like firewalls [11], while others develop
generic models to represent network communication
mechanisms [10]. However, it is [7], who made the best
contribution to the field, presenting a specific model for
the representation of intermediate devices, using a simple
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and precise approach. In particular, the proposed model
is composed by six elements, that are described by its
authors as follows.

1) Interfaces and zones: a middlebox is composed
by one or more physical network interfaces, each of
which belongs to one or more logical network zones.
A zone represents a packet entry and exit point from
the perspective of middlebox functionality. A middlebox
may process packets differently based on their ingress
and egress zones.

2) Input preconditions: specify the types of packets
that are accepted by a middlebox for processing, and are
represented using a clause of the form I(P, p), which is
true if the headers and contents of packet p match certain
pattern P.

3) State data: refers to all the information that a
middlebox maintains about the flows and sessions that
it processes.

4) Processing rules: model the core functionality of a
middlebox. A processing rule specifies the action taken
by a middlebox when a particular condition becomes
true.

5) Auxiliary traffic: in addition to its core functional-
ity of transforming and forwarding packets, a middlebox
can generate additional traffic, either independently or
when triggered by a received packet.

6) Interest and State Fields: the interest fields of a
middlebox identify the packet fields of interest; in other
words, the protocol fields that it analyzes or modifies.
The state fields identify the subset of the interest fields
used by the middlebox in storing and retrieving state.
Although these fields can be deduced from the processing
rules, they are explicitly presented in the model because
they can highlight succinctly unexpected aspects of mid-
dlebox processing.

B. Features and characteristics
In addition to the previous model, it is possible to

classify middleboxes into distinct groups based on certain
characteristics. [6] proposes a set of eight variables that
can identify a given intermediate device. Such variables
are described as follows.

1) Protocol layer: specifies one or more protocol
layers at which a middlebox operates.

2) Functionality (Explicit vs. Implicit): specifies
whether the functionality provided by a middlebox is an
explicit design feature of the protocols (such an SMTP
relay) or an unforeseen add-on, possibly designed to
operate transparently (like a NAT device).

3) Instances (Single hop vs. multi-hop): specifies how
many instances of a middlebox can co-exist in the path
between two end nodes. Typical values are 1, 2, 2n, or
infinite.

4) Position (In-line vs. Call-out): specifies the posi-
tion of a middlebox in the network. Middleboxes may be
place in-line, on the data path, or may be located out of
it, requiring an explicit call-out triggered by some event.

5) Goals (Operation vs. Optimization): specifies
whether the middlebox performs an essential function,
without which end nodes can not communicate as de-
sired, or only an optimization.

6) Alteration capabilities: specifies whether the mid-
dlebox performs forwarding functions that leave the
packets virtually unaltered, or functions that alter the
packets in a non-trivial way or create side effects for the
end hosts. Examples of the former include switches or
routers. Examples of the latter include firewalls, NATs,
or proxies.

7) State management (Hard vs. Soft State): specifies
whether, upon a sudden lost of state information, sessions
continue to run, either normally or in some kind of
degraded mode (soft state), or fail and need to be re-
established from scratch (hard state).

8) Failure Handling (Fail-over vs. Restart): specifies
whether, in the event of a hard state middlebox failure,
the session is redirected to an alternative box that has a
copy of the state information, or it is forced to abort and
restart.

C. Types

From the model and characteristics introduced in the
previous sections, it seems clear that there is a wide
variety of intermediate devices, to the extend of their
purpose, as well as their impact on the networks where
they are deployed. This section presents a list of the most
common types of middleboxes [6].

1) Network Address Translators (NATs): a NAT is a
device that alters IP datagrams, modifying their source
and destination address. This is often done to facili-
tate communication between hosts that use private, non
routable, IP address spaces, and hosts with public IP
addresses.

NAT devices are not compatible with application layer
protocols that have dependencies with underlying IP
addresses. Examples include FTP or SIP. For this rea-
son, NATs are often combined with application layer
gateways, which are capable of making the necessary
changes to enable communications.

There is an special type of NAT systems, called
NAP-PT (NAT with Protocol Translator) [15], which
transforms IPv6 into IPv4 datagrams and vice versa.
However, its utilization has been deprecated by the IETF,
so they may not enjoy a wide deployment [5].
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2) Firewalls: a firewall is a system that is located
between two or more network segments and has the
ability to analyze the traffic that reaches its interfaces,
denying or authorizing its entry, according to a pre-
established security policy. Firewalls are probably one
of the most common middleboxes in IP networks.

In general, the traffic that traverses the firewall does
not suffer special alterations. However, when a firewall
drops a packet, it does not inform the original sender
of such event. This does not only cause connectivity
problems, but also makes it very difficult for the sender
to diagnose the problem.

Firewalls often operate at the network and transport
layer. Nevertheless, some specialized firewalls may also
operate at the application layer, making decisions based
on operation types or compliance to the standards [12].

3) SOCKS Gateways: a SOCKS gateway is a device
that acts as an intermediary between a client and a
server, typically in scenarios where a firewall blocks
direct communication between the two parties. These
gateways use the SOCKS protocol [9], which operates
at the application layer (OSI session layer), and are
accessible through TCP port 1080.

4) Tunnel Endpoints: they are the devices that create
or manage communication tunnels. They offer data en-
capsulation and transport services between two points
in a network. Tunnel endpoints alter the packets that
traverse the tunnel, first adding and later removing some
protocol headers. Although packets that enter one end
of the tunnel leave the other end unaltered, the presence
of the tunnel may affect the end-to-end principle, as the
transmitted packets could have experienced a different
per-hop treatment (QoS, routing, etc.), if the communi-
cation had not been tunneled.

5) Traffic Handlers: also known as packet classifiers,
markers or schedulers, are devices that classify, schedule
or tag the packets that traverse them, with the intent of
adapting network traffic to a specific policy. In particular,
these devices may tag packets to provide differentiated
services, alter their order or time sequences, or drop a
number of them based on different parameters and mea-
surements. Although their presence affects the end-to-end
principle, they do not introduce significant changes to the
best effort nature of the Internet.

6) Load balancers: a load balancer is a device that
redirects traffic destined to a particular network service,
to the appropriate physical or logical server, based on
the load conditions of the set of servers that provide the
same service. Load balancers can operate at the IP level,
rewriting destination addresses, or at the application
layer, making the appropriate changes to application data
or providing the necessary redirection mechanisms.

7) Application Layer Gateways: an application layer
gateway (ALG) is a device that is able to process
and modify application layer data found in network
packets that traverse it. Typically, their purpose is to
adapt application layer protocols to changes in other
layers like those performed by NAT devices. Other
uses include performing translations between different
application protocols or different versions of a protocol,
generating usage statistics or keeping event logs.

8) Transcoders: a transcoder is a device that performs
application layer data conversions. They are mainly used
in communications where the sender is unable to provide
data in a suitable format for the receiver. Examples of
transcoder use include conversion of voice data between
VoIP and cellular voice, bitrate video conversion or
image scaling.

9) Proxies: a proxy is a device that simultaneously
plays the role of a server and a client. They act as
clients of a network service, making requests on behalf
of the real client, and act as servers for such client,
forwarding the data provided by the real server. A proxy
may be used explicitly (clients are aware of its presence
and choose to access network services through it), or
implicitly (clients ignore its existence and the proxy
intercepts communications transparently). In both cases,
the traditional client/server network flow, is divided in
two sub-flows, one between the client and the proxy, and
the other between the proxy and the server.

10) Caching Proxies: a caching proxy is a device
that monitors client/server application layer sessions and
stores (caches) server responses in order to replay them
if the client issues identical requests in the future. Its
purpose is to improve response times and to prevent
redundant communications.

11) Performance Enhancing Proxies (PEPs): a PEP is
a device that is intended to improve end-to-end perfor-
mance of some network protocol. Typically PEP devices
work in pairs (like tunnel endpoints), breaking end-
to-end connections into multiple parts, using different
parameters or even different protocols, for each segment
of the communication. PEPs are very popular in TCP/IP
networks with satellite links, as TCP does not perform
well on links with large bandwidth-delay products.

12) Redirecters: a redirecter is a device that intercepts
communications initiated by a client and redirects them
to another server that, using the same protocols, provides
a different service than the one expected by the client.
Redirecters are often used in networks that, in order to
be accessed, require users to pay a fee, accept some legal
conditions or provide authentication details. Perhaps the
most common case are HTTP redirecters placed in air-
ports, hotels or universities, that do not let users access
the Internet until they have completed certain steps.
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13) Intrusion Detection Systems (IDS): an IDS is a
device that monitors network traffic in order to detect
signs of an attack or a violation of a per-established
security policy. Due to their passive nature, traditional
IDS devices are not considered middleboxes. However,
there is a special type of IDS called in-line IDS (or
Intrusion Prevention System), that is placed at some
intermediate point in a communication path, and have the
ability to block traffic when a particular event is detected.
Although, in practical terms, in-line IDS devices could
be considered application layer firewalls, they have been
explicitly included in the list, due to their popularity in
the security field.

III. MIDDLEBOX DETECTION

The detection of intermediate devices has not been
studied thoroughly, even though it is of great importance
for many applications. Some authors have unsuccessfully
tried to define certain requirements for their discovery
[16]. Others have attempted to introduce mechanisms
to allow middleboxes to explicitly signal their presence
upon request, either through the standardization of new
TCP options [17], or using new protocols to interact
with such devices [14]. However all proposed techniques
require intermediate devices to be aware of the semantics
of the protocol or TCP option being used to detect them,
and more importantly, their willingness to disclose their
presence.

In this section, we present a novel technique for the
detection of middleboxes that does not require their
explicit cooperation. We also analyze the problems and
challenges that we encountered in the process of its
implementation.

A. Conventions and Assumptions

The proposed technique is based on the following
assumptions and conventions:
• The protocol for the detection of middleboxes is

carried out by two parties: an entity called an echo
client, denoted by Ec, and another entity called echo
server, denoted by Es.

• Ec has the ability to generate and transmit arbitrary
network packets.

• Es has the ability to capture any network packets
that arrive to its network interfaces.

• Ec and Es share some secret K, which has been
agreed via some out-of-band mechanism.

• There is a working communication path between Ec

and Es, and both can successfully establish a TCP
connection, initiated by the former, over some port
p.

• If they exist, middleboxes are located in the com-
munication path between Ec and Es, and perform
some kind of alteration to the traffic that traverses
them.

B. Detection Algorithm Overview
The following steps describe the general idea of the

proposed algorithm.
1) Ec establishes a TCP connection with Es over the

p port.
2) Ec and Es agree to establish an application layer

session.
3) Ec informs Es of the type of packets that is about

to send.
4) Es gets ready to capture packets of the requested

type, and tells the client that it may proceed with
the transmission.

5) Ec starts sending packets.
6) Es captures the packets as they reach its network

interfaces and provides a copy to Ec through the
TCP channel established in step 1.

7) Ec receives the copy of the packets returned by
the server and compares them with the packets
that were sent originally. Any non-trivial difference
found in the packets, will reveal the existence of
a middlebox at some point in the communication
path between Ec and Es.

8) When the client considers that enough packets have
been sent, the connection is closed.

C. The Nping Echo Protocol
In order to implement the basic idea that was outlined

in the previous section, it is necessary to design a proper
protocol. This section provides a detailed description
of such protocol, that we named Nping Echo Protocol
(NEP).

The protocol if formed by seven different types
of messages, described in detail below. All messages
have a common header H0 = {v, t, l, s, T}, where v
denotes the protocol version number (currently v = 1),
t indicates the type of message that follows the header,
l is the length of the message, s is a sequence number
and T is the current time at the sender. The following
list briefly describes all message types.

• Type NEP_HANDSHAKE_SERVER, which we
will denote by Hs. It is the first message in the
three-way handshake that client and server carry out
in order to establish a NEP session. It is sent by
the server and its purpose is to inform the client of
the version of the protocol supported by the server,
and to provide a timestamp and a random nonce for
security reasons.

• Type NEP_HANDSHAKE_CLIENT, Hc. Its pur-
pose is to indicate agreement on the protocol ver-
sion, to confirm the random nonce in Hs and to
provide another nonce value to be confirmed by the
server in its next message.

• Type NEP_HANDSHAKE_FINAL, Hf . Its purpose
is to confirm the random nonce in Hc and indicate
the successful establishment of the session.
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• Type NEP_PACKET_SPEC, Hp. Its purpose is to
inform the server of the characteristics of the pack-
ets that the client intends to transmit.

• Type NEP_READY, Hr. Its purpose is to indicate
that the server is ready to receive network packets
from the client.

• Type NEP_ECHO, He. Its purpose is to provide the
client with a copy of the state of one of his packets
when it reached the server.

• Type NEP_ERROR, Hx. Its purpose is to indicate
that, due to some error, the session needs to be
aborted.

• Type NEP_BYE, Hb. Its purpose is to signal the
successful termination of the current session.

The middlebox detection process is conceptually di-
vided into four different phases.

1) Phase 1, Side Channel Establishment Handshake:
where client and server agree to establish an echo ses-
sion. It involves the following steps:

1) Ec establishes a TCP connection with Es over port
p.

2) Es sends Hs = {H0, ns, Ms} to Ec, where ns
is a 256-bit random number, and Ms is a message
authentication code for Hs.

3) Ec verifies that Ms is correct and sends Hc =
{H0, ns, nc, Mc} to Es, where ns is the same
random number included in Hs, nc is another 256-
bit random number generated by Ec, and Mc is a
message authentication code for Hc.

4) Es verifies that Mc is correct and that the received
ns matches the ns in Hs. If the verification suc-
ceeds, Es sends Hf = {H0, nc, Mf} to Ec, where
ns is the random number included in Hc and Mc

is a message authentication code for Hf .
5) If Ec determines that Mf is correct and that the

received nc matches the nc in Hc, the session is
considered successfully established.

2) Phase 2, Parameter Exchange: where the client
informs the server of the packets that it intends to send.
It involves the following steps:

1) Ec sends Hp = {H0, s, c, Mp} to Es, where s is
the number of network packets that Es is planning
to send to Es, and c is a list of characteristics
(such as upper level protocol, port numbers, IP
identifiers, etc) that describe such packets, and Mp

is a message authentication code for Hp.
2) Es verifies that Mp is correct, gets ready to capture

packets from the wire that match the characteristics
in c, and sends Hr = {H0, Mr} to Es, to indicate
its readiness.

3) Phase 3, Packet Transmission: where the client
transmits the packets and the server returns a copy of
what it received. It involves the following steps:

1) Ec verifies the Mr in Hr, generates a set of
packets P with the characteristics that it previously
announced, and sends each packet p in P , one by
one, to Es, not over the side channel, but through
standard packet transmission mechanisms.

2) For each packet p′ that Es captures from the wire,
it determines if p′εP , based on the characteristics
of p′ and the characteristics listed in c.

3) If p′εP , Es sends a message He =
{H0, l, p

′, Me} to Es, where l is a number
that identifies the link-layer type in p′, and Me is
a message authentication code for He.

4) When Ec receives He, validates Me, and stores p′

for later processing.
5) When client or server find it appropriate, the ses-

sion is closed sending a message Hb = {H0,Mb}
to the other end.

4) Phase 4, Middlebox Detection: where the client
processes a received He message to detect the presence
of middleboxes in the path between him and the server.
It involves the following steps:

1) Extract p′ from the received He message.
2) Compare the value of every field in p′ with the

original packet p.
3) Any non-trivial difference between p′ and p indi-

cates the presence of a middlebox in the path.
Because the client has access to both versions of the
packet (the original packet before transmission, p, and
the version of the packet that was received by the server,
p′), it can compare them and spot any alterations made
in transit. Of course, not all differences indicate the
presence of middleboxes, as IP packets are expected to
present trivial alterations in transmissions that involve
multiple hops: for every hop, the TTL is decremented by
one unit and the checksum is recomputed. However, the
variation of the TTL itself already offers the client some
information: the number of routers the packet traversed
until it reached the server.

Any additional differences found between p′ and p
will evidence the presence of an intermediate device
in the path. In order to determine what type of device
has altered p, the client needs to have a database of
middlebox types and characteristics. In particular we
suggest a database of tuples mi = {T, L, F}, where T
is the type of device (NAT, ALG, proxy, etc.), L is the list
of layers at which type T operates, and F is the list of
“fields of interest” of the device. Based on the fields that
changed their value in transit, and the layer those fields
belong to, the client should be able to determine the type
T of the device that modified the packet in transit.

D. Security Problems and Implementation Challenges
Conceptually the operation of the protocol is simple,

but in practice, its implementation involves several prob-
lems and challenges that must be taken into account. This
section discusses some of those problems.
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1) Packet identification at the server side: one of the
main challenges that the echo server must face is the
to identify, among the set of packets that are captured
from the wire, which of them were generated by the
client. Any host connected to the Internet is exposed
to a continuous noise of unsolicited packets that arrive
to their network interfaces. Such traffic may be caused
by port scans [1], [2], or by misconfigured routers an
end systems [3], [18]. It seems clear that no echo server
connected to the Internet can expect to receive traffic only
from an echo client, and therefore, it must be capable to
distinguish legitimate packets from any noise.

To solve this problem, we included the Hp message
in the protocol. Such message is sent by the client
and its purpose is to provide the server with a list of
characteristics of the network packets that the client is
about to send. Based on such characteristics, the server
can discard packets that do not match them. However, the
server must tolerate a certain degree of variability, as the
presence of middleboxes in the communication path can
cause alterations of the packets in transit, and therefore,
not all characteristics may survive the transmission. In
particular, we propose to classify captured packets into
two groups, noise and legitimate, through an scoring
algorithm. Such algorithm may be described as follows:

Let p be a network packet, F ={f1, f2, ...., fn} the
set of the n fields that form p, L ={l1, l2, ...., ln} the
set of lengths of the fields in F expressed in octets, and
V ={v1, v2, ...., vn}, the set of specific values that the
fields in F take for a given p.

1) Ec and Es perform the three-way handshake that
establishes a NEP session.

2) Ec sends Hp = {H0, s, c, Mp} to Hs where c =
{F,L, V }

3) Es indicates that is ready to receive packet p,
through an Hr message sent to Ec.

4) Ec builds a packet p formed by n fields with the
values in V and sends p to Es.

5) In transit, p traverses one or more intermediate
devices that alter the value of one or more fields.

6) Es captures a packet p′, formed by fields with
values V ′.

7) Es computes a score for p′ as follows: s(p′) =
n∑

i=1

1

∀ vi = v′i
8) If s(p′) exceeds some threshold tp, Es determines

that packet p′ has been generated by Ec, and sends
a copy of p′ to Ec, encapsulated in an He message.

The operation performed by Es in step 7 is the score
of a given packet based on its similarity with the char-
acteristics provided by the client in the Hp message. In
particular, it reflects the number of fields that are equal,
which certainly offers information about their similarity.
However, not all matches should contribute equally to
the score, as the probability of a random value match
varies inversely with the length of the field. Statistically,

a field of length n octets will match in one out of 28n

packets. For this reason, the scoring operation needs to
be modified, so it takes lengths into account. A possible
approach could be:

s(p) =
n∑

i=1

2li·8 ∀ vi = v′i

In other words, the sum of the inverse of the proba-
bilities of a random match. One major drawback of this
approach is that the score value would vary a lot, which
makes it difficult to choose the threshold value tp that a
packet must score in order to be considered legitimate.
Another possible solution would be to compute s(p) as
follows:

s(p) =
n∑

i=1

li ∀ vi = v′i

In this case, the contribution of a field to the
score varies linearly with its length, what reduces the
supremacy of long fields. We establish one exception to
this rule: matches of application layer data, for which
we propose an upper bound of 4. In other words, when
the list of characteristics provided by Ec in Hp contains
information about a payload above the transport layer,
the maximum contribution of any positive match will
be limited to the contribution of an equivalent 4-octet
field. This prevents very common payloads like “GET
/ HTTP/1.1\r\nHost:” from causing the score to exceed
the tp threshold even when no other fields matched.

Nevertheless, it does not make sense to consider all
fields with the same length equal, as it is very common
for network protocols to have fields with fixed or easily
predictable values. Examples include header lengths,
flags or protocol identifiers. Consequently, s(p) needs
to be modified so it takes into account that fields that
take random values or values that are difficult to predict
by a third party without access to the traffic sent by
Ec, are more significant that others. We propose the
addition of a new element to the formula, a weighting
factor that adjusts the importance of each particular
field. We therefore define a new set of weighting factors
W = {w1, w2, ..., wn}, where wi is the weight for field
fi in F . With this modification, s(p) would be computed
as follows:

s(p) =
n∑

i=1

li � wi ∀ vi = v′i

This approach offers a great flexibility for the
implementation, something that is essential, due
to the wide variety of protocols and header fields.
The value taken by each wi in W depends on the
syntax and semantics of each protocol field. In table
I we summarize the weights that we used in our
implementation. However, we do not claim that our
selection is optimal, leaving that as a future line of work.

There is one last issue with this scheme. The introduc-
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Protocol Field Weight
IPv4 TOS 1.0
IPv4 Protocol 0.9
IPv4 Identifier 2.5
IPv4 Fragment Offset 1.0
IPv6 Traffic Class 1.0
IPv6 Flow Label 2.5
IPv6 Next Header 0.9
TCP Source Port 1.5
TCP Destination Port 1.0
TCP Sequence 2.0
TCP Acknowledgement 1.0
TCP Flags 1.0
TCP Window 1.0
TCP Urgent Pointer 1.0

ICMP Type 1.0
ICMP Code 1.0
UDP Source Port 1.5
UDP Destination Port 1.0
Other Payload 1.0

Table I
SUMMARY OF WEIGHTING FACTORS

tion of weighting factors assumes that the contribution of
a given matched field to the score is always the same,
independently of the value that produced the match.
However, some network protocols choose special field
values to indicate that some functionality is not being
used. One good example of it is the Acknowledgement
field in TCP, that takes a value of zero whenever the ACK
flag is not set. In that case, matches of the value zero
should not influence the score as much as other values
that are less common and more difficult to predict. For
this reason, we add one last element to s(p), as follows:

s(p) =
n∑

i=1

li � wi � z(fi, v′i) ∀ vi = v′i , where

z(fi, v
′
i) =

{
wz if v′i is a default value of fi

1 otherwise
,

and wz is the special case weighting factor for which
0 6 wz < 1.

2) Multi-session support: another problem that an
echo server must face is the provision of the service
to multiple, simultaneous clients. This introduces some
challenges when the server has to determine which
packets belong to which particular client. The most
obvious solution would be to select those packets whose
source IP address matches the address observed from
the client’s side channel establishment. However, such
condition is not enough to guarantee the accuracy of the
identification, as the side channel itself involves certain
TCP traffic exchanged between client and server that
must be ignored. In addition, one client may decide to
establish multiple session in parallel, what would result
in many packets with the same source and destination
IP address but that belong to different sessions. Same
applies to different clients that are behind a single NAT

device.

It could also be the case that some client decides to
use the echo service to determine if a packet with an
spoofed IP address can reach the server. In this case,
the source IP address observed by the server would not
match the client’s. In the same way, packets should not
require to be addressed to the server’s IP address, as the
server could be run inside some intermediate device, like
a router, placed along the path.

It seems clear that while the IP address used by the
client to establish the side channel can be a useful piece
of information for the server in some cases, it must not
be relied upon, as there are some scenarios in which such
information can not be used reliably.

Our implementation does not take IP addresses into
account because a minor modification to the scoring
algorithm presented in the previous section lets servers
handle simultaneous echo sessions and match captured
packets with the appropriate client in an effective manner.
Let U = {u1, u2, ..., uk} be a list of k clients that
have an active echo session with the server (sorted oldest
first), and C = {c1, c2, ..., ck} the set of characteristics,
cj = {Fj , Lj , Vj}, provided by each client in the Hp

message, the process is as follows:
1) Es captures a packet p′, formed by fields with

values V ′.
2) For each cj in C, Es computes a score for p′ as

follows: s(p′, cj) =
n∑

i=1

li � wi � z(fi, v′i) ∀ vi = v′i

where viεVj
3) Es selects the client with the highest score for

packet p, sm = s(p′, cm).
4) If sm exceeds some threshold tp, Es determines

that packet p′ has been generated by the user um,
and sends a copy of p′, encapsulated in an He

message, through the side channel established with
sm.

Although the algorithm does not guarantee a total accu-
racy, we believe that, providing clients select some of
their packet characteristics randomly, the probability of
misidentifying packets is reasonably low. Nevertheless,
a malicious client with the ability to guess all packet
characteristics provided by another client, could include
the same c in its Hp message and therefore, obtain the
same score for each packet. To alleviate this problem
we propose that the server resolves ties by awarding the
packet to the client that connected first.

3) Significant protocol layers: another aspect to con-
sider in the design of the protocol is which network
layers are significant to the process. It seems reasonable
to take the network and transport layers into account, as
they play a key role in today’s networks, their protocol
headers are delivered end-to-end, and there is a wide
variety of middleboxes that operate at that level.
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Link layer headers, on the other hand, are only prop-
agated in a point-to-point fashion, so unless client and
server are connected to the same subnet, it does not make
much sense for the client to provide details about the link
layer parameters that it intends to use. Nevertheless, it
could be interesting if echo servers included link layer
headers in He packets. A possible usage scenario would
be a server that is located in a subnet with more than
one router. If the client has access to the link layer source
address, it could be able to determine if packets reach the
server forwarded by different devices. Same applies to
devices performing load balancing at the link layer [4]. It
should be noted that in these cases, the server would have
to tell the client explicitly which link-layer protocol is in
operation, so the client can interpret the data correctly,
and determine the offset where the network layer header
starts. That is the reason why, in our implementation,
message He includes a link layer identifier.

The application layer is also a good candidate to be
considered for the protocol. If the server also included a
packet’s application data in He messages, clients would
be able to detect application layer gateways or any other
type of middlebox that alters data at that level. Although
the implementation is straightforward for connectionless
protocols like UDP or ICMP, it presents some challenges
when it comes to connection-oriented protocols like TCP.
In order for a given client to transmit data over TCP, it
must first establish a connection, through the standard
TCP three-way handshake. Therefore, the client needs to
be able to generate custom TCP packets for that matter.
Let Es be a host that offers an echo service and also
some other network service through port n, a client Ec

would follow these steps:
1) Generate a TCP packet with the SYN flag set and

a target port number n and send it to Es.
2) Start capturing packets that arrive to its network

interfaces.
3) Capture the TCP packet with the SYN and ACK

flags set that Es sends in response.
4) Generate and send a TCP packet with the ACK flag

set, and the appropriate sequence and acknowledg-
ment numbers.

5) Transmit any application layer data in additional
TCP packets, with the appropriate parameters for
the connection.

This has a significant impact on the complexity of a
client’s implementation, as it requires echo clients to
emulate TCP stacks, at least partially, keeping track of
sequence and acknowledgment numbers and handling
packet losses and retransmissions. However, a client
can not simply invoke system calls such as connect(),
as it needs to know the value of the different header
fields at the network and transport layers, in order to
produce meaningful Hp messages. It is true that we
could relax the restriction that we imposed to application
layer matches in section III-D1 so payloads above the

transport layer contribute to the score proportionally to
their length. This would allow clients to establish TCP
connections using standard system calls and produce
Hp messages that only contain information about the
application layer. Such Hp messages would contain
enough information for the scoring algorithm, providing
the transmitted payloads contain enough entropy to avoid
collisions with other payloads. Nevertheless, our current
implementation does not relax the described restriction,
nor does yet establish full TCP connections. For this
reason, changes in application layer data may only be
observed when non-connection oriented transport proto-
cols, such as UDP, are used.

4) Security: the fact that the echo server captures
and retransmits packets that reach its network interfaces,
makes it an attractive target for attackers that want to
access the server’s traffic. For this reason, it is important
to take security into account in all phases of the protocol.
In this section, we will discuss the potential security
problems, and the measures we have taken to mitigate
them. For this matter, we define two different attacker
models, to reflect what we believe are two common uses
of the protocol. They differ only in whether the attacker
knows the secret K. We assume that the attacker always
has control of the network, but may not break encryption
or forge message authentication codes.

• Model 1: trusted clients/private server.
– The server and all legitimate clients know a

secret K and are honest. No other party knows
K.

• Model 2: untrusted clients/public server.
– Secret K is made public, so anyone may use

the server. Clients are not assumed to be honest.

We know define the expected security properties of the
protocol. In general, the protocol seeks to ensure con-
fidentiality, integrity, and authentication. Nevertheless,
Model 1 has more stringent security properties than
Model 2. For Model 1, we expect the following security
properties to hold:
• Property 1A: an attacker cannot make use of the

echo service.
• Property 1B: an attacker cannot convince a client

that it is a legitimate server.
• Property 1C: an attacker cannot modify traffic

without detection.
• Property 1D: once a client and a server have

established a session, an attacker cannot access the
information exchanged during that session.

• Property 1E: when a connection between a le-
gitimate client and a server is ended, it is ended
from the point of view of both endpoints (mutual
termination). In particular, an attacker cannot keep
one end of a session alive.
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In Model 2, the attacker knows K, so ensuring confiden-
tiality, integrity, and authentication is impossible. But a
malicious client should not be able to deny service to
other clients or to gain access to more information than
any honest client. For Model 2, these are the expected
security properties:
• Property 2A: a malicious client cannot interfere

with other client sessions.
• Property 2B: a malicious client can only see cap-

tured packets that correspond to its own, not those of
other clients, and especially not any traffic unrelated
to the echo protocol.

The first three properties for Model 1 are satisfied by
the message authentication code that is appended to
every message of the protocol. As the attacker does
not know K, it is impossible for him to produce valid
messages. In particular, the attacker cannot produce valid
Hc messages, so it is becomes impossible to establish
sessions with a server (property 1A); he cannot produce
valid Hs or Hf messages so he is not able to act as
a legitimate server (property 1B); and he cannot alter
legitimate messages without being detected because he
is not able to recompute message authentication codes
(property 1C).

Replay attacks are ineffective. The presence of nonces
in the three-way handshake guarantees the freshness of
Hc and Hf . In addition, every message contains a times-
tamp and a sequence number, which allows the receiving
party to verify that they belong to the current session.
Furthermore, all cryptographic keys are influenced by
the nonces (see Section III-D5), so it is highly unlikely
that two different sessions use the same keys, which
makes it virtually impossible for an attacker to replay
any message.

The fourth property is satisfied by the use of encryp-
tion for all messages, except for the first three (which
correspond to the three-way handshake session estab-
lishment). In particular, our implementation encrypts
messages after the appropriate message authentication
code has been computed. Such authentication code is
excluded from the encryption, and is transmitted in clear
text.

Property 1E is satisfied by the use of the special
messages Ex and Eb. The former is produced and sent
by one of the parties to indicate that there was some error
that caused the session to terminate. The latter is sent to
indicate that the sender wishes to end the session.

In model 2, security properties are harder to satisfy.
Property 2A is impossible to meet if the attacker has the
ability to intercept a client’s traffic. This is a problem for
virtually all application layer protocols, as an attacker
may easily tear down existing transport layer sessions.
Even if protocols like IPSec are in operation, malicious
users can choose to block traffic in any direction, what

results in a denial of service. Conscious of this limitation,
we relax our initial assumption to state that the attacker
may have access to the traffic produced by the client or
the server, but does not have the ability to intercept it
or supplant their identity at the network and transport
layers. In other words, the attacker may be able to sniff
the traffic exchanged by legitimate clients and servers but
may not inject traffic in the network with IP addresses
for which he is not the legitimate holder.

In this new scenario, Property 2A is satisfied by
the server, as it keeps separate state information for
each client, such as nonces, timestamps and sequence
numbers. Even though the attacker has access to such
information and could produce valid message authen-
tication codes, he cannot inject messages into existing
sessions, as he is not able to transmit data on behalf of
other clients.

Property 2B has important implications. Our main con-
cern is to prevent malicious clients from accessing other
traffic than their own. Once the server has determined
that a particular captured packet belongs to a given client,
such packet is echoed and never processed again. For this
reason, if an attacker manages to convince the server that
certain packets are his, such packets will be echoed to
the attacker, and not to the legitimate client, what would
cause a denial of service for the latter.

Because the attacker has access to any client’s Hp

message, he can easily establish a session with the server
and supply the same list of packet characteristics. This
would cause the attacker and the legitimate client to
obtain the exact same score for every packet. As we
mentioned above, the server resolves ties by awarding
the packet to the client that connected first. One could
think that this solution prevents attackers from stealing
a client’s packets. However, the time at which the client
and the attacker established a connection with the server
is not a valid piece of information to base decisions on.
Doing so would allow the following attack.

1) An attacker, Ea, establishes a TCP connection with
Es.

2) Ea and Es establish an echo session exchanging
messages Hs, Hc, and Hf .

3) Ea waits until the victim, Ec, establishes a TCP
connection and an echo session with Es and sends
an Hp message.

4) Ea captures the Hp sent by Ec.
5) Ea extracts the list of characteristics c from Hp,

generates its own Hp message with the same c,
and sends it to Es.

At this point, the server holds information about two
connected clients, Ea and Ec, both with the same c.
When Ec starts transmitting network packets, the server
will capture them and apply the score operation to each
one. Because Ea and Ec have the same c, they will obtain
the same score for every packet, but since Ea connected
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first, packets will be echoed to the attacker and not to
the legitimate client.

To mitigate the attack we suggest making the server
record the time at which Hp messages are received and
resolve ties based on such time, awarding packets to
the client whose Hp arrived first. This does not solve
the problem completely, as the attacker might know a
fastest network path to reach the server, and could be
able to capture the victim’s Hp message and make his
own Hp arrive to Es first. However, we believe the
solution offers a reasonable compromise between ease
of implementation and security.

We are also concerned about a particularly dangerous
situation: an attacker that manages to receive He packets
that contain traffic that is unrelated to the echo protocol.
In other words, an attacker that is able to convince the
server that any packet that reaches its network interfaces
has been generated by him. This has obvious security
implications as it would allow the attacker to sniff the
server’s traffic remotely, from any network location.
The attack could be easily carried out if no restrictions
are placed in Hp messages. For example, an attacker
could send a list of characteristics like {IPprotocol =
6, IPprotocol = 6, ..., IPprotocol = 6}, which means,
“layer above IP equals TCP”. This would increase the
attacker’s score multiple times for any TCP packet that
reaches the server. If enough duplicate tests are provided,
the score will exceed the threshold value tp, causing the
server to send a copy of every TCP packet to the attacker.
Another possibility would be to provide {ICMPtype =
0, ICMPtype = 1, ..., ICMPtype = 255}, what would
increase the attacker’s score for any ICMP message,
regardless of its “Type” field.

To solve this problem, we suggest prohibiting multiple
tests with the same left-hand side. Additionally, servers
should verify that the characteristics provided by clients
are reasonable. Examples include, verifying that IPv4
or IPv6 characteristics are specified, but not both at the
same time, or verifying that there are characteristics for
only one transport layer protocol, not many.

5) Cryptographic keys: our implementation of the
protocol uses a set of five cryptographic keys per client
session. All keys are derived from the K secret that Ec

and Es share, the random nonces exchanged during the
three-way handshake (nc and ns), and a unique type
identifier for each key. There is one encryption key
and one message authentication key for each direction
(Ec → Es and Es → Ec). Additionally, there is an
special key used for the authentication of message Hs,
that is generated and used temporarily due to the absence
of the client-side generated nonce at the time message
Hs is created.

The key derivation is performed through a slight
variation of the PBKDF1 algorithm [8], which uses the

SHA-256 hash function. A pseudo-code representation is
presented in Alg. 1. Note that N = {ns, nc}, except for
the authentication of Hs, where N = {ns, 0}.

Algorithm 1 Key derivation Process

h=SHA256 (K + N + Key_Type_Id )
do (1000 t i m e s ) {

h=SHA256 ( h ) ;
}

The implementation uses AES-128 for encryption and
HMAC-SHA256 for message authentication. In those
cases where the generated keys are longer than required,
the last 256− x bits of key material are discarded (least
significant bits), where x is the desired key length.

E. Usage Scenarios

This section describes some examples of usage scenar-
ios for the middlebox detection protocol described above.
Note that the proposed scenarios typically require the
server to be located out of the client’s network (Fig. 1).
Although this is not true for all cases, for simplicity we
have omitted that kind of details from the descriptions.

1) Scenario 1, detect address translation: clients may
detect the presence of a NAT device in their local network
if they observe that their packets reach the server with
a different source IP address. In such case. the observed
address would be the NAT’s public IP (or the last NAT’s
public address if there are multiple nested NAT devices).

2) Scenario 2, list blocked port numbers: clients may
determine which ports are being blocked by a firewall
by sending packets to all possible 216 port numbers
on the server. Packets for which an He response was
received indicate that the firewall does not block the
corresponding port.

3) Scenario 3, detect blocked protocols or message
types: clients may determine if a particular protocol or
message type is being blocked by a firewall, by sending
packets with the desired characteristics and checking if
they were blocked in transit, based on the presence or
absence of He messages. A typical example may be to

Figure 1. Typical setup.
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detect the ability to send ICMP Echo requests to the
Internet.

4) Scenario 4, diagnose connectivity problems: when
the establishment of a TCP connection times out, clients
may determine if the problem occurred because the
SYN packet never reached the server, because the SYN-
ACK did not reach the client, etc. This can be easily
extrapolated to other protocols.

5) Scenario 5, detect path MTU through IP fragmen-
tation: Path MTU Discovery (PMTUD) does not work
if some intermediate firewall blocks ICMP Destination
Unreachable messages. In that case, a client may deter-
mine a path’s minimum MTU by sending IP datagrams
of various sizes, without the DF bit set, and checking
received He messages for signs of fragmentation along
the path.

6) Scenario 6, detect anti-spoofing policies: clients
may test whether their network gateway filters out
spoofed packets (packets leaving the network whose
source address does not belong to the network address
space), by sending IP datagrams with spoofed IP ad-
dresses, and checking if such datagrams reach the server.

7) Scenario 7, detect in-line IDSs: clients may detect
the presence of an in-line Intrusion Detection System by
sending packets that are known to trigger IDS alarms to
the server. The fact that one or more packets do not reach
the server could indicate the presence of an in-line IDS
that prevents attacks by blocking suspicious traffic.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our implementation of the
protocol through four different experiments.

A. Experiment 1: Router
In this experiment we set up a client, Ec, and a

server, Es, located in two different subnets that are
interconnected by a router, Er. All three participants
are regular desktop machines running a GNU/Linux
operating system. Er has two network interfaces, Ic and
Is which are connected to the client’s subnet and the
server’s subnet respectively. We configure Ec to send five
ICMP Echo requests to Es. After we run the experiment,
from the client’s perspective, we observe the following:
• ICMP Echo packets reached the server’s machine

successfully: Ec received five He messages which
contained the ICMP Echo requests that arrived to
the server’s network interface.

• Server’s machine responded to the requests with
ICMP Echo replies: Ec captured ICMP Echo replies
that contained the appropriate ICMP message iden-
tifiers, sequence numbers, and IP source addresses.

• There is a network distance of one hop between
Ec and Es: the packets included in the received
He messages had a TTL of one unit less than the
originals.

B. Experiment 2: Firewall

This experiment is a modification of the previous one,
where the router now also assumes the role of a firewall.
At the server side, we set up a trivial network service that
accepts connections on port k. We configure Ec to send
10 TCP packets with the SYN flag set and a destination
port number that equals k. We set up firewall rules in Er

to allow forwarding of any IP datagrams except those that
contain a TCP header whose source port matches k. After
we run the experiment, from the client’s perspective, we
observe the following:
• TCP packets issued by Ec reached the server’s

machine successfully: Ec received 10 He messages
which contained such packets.

• There is a network firewall between Ec and Es that
drops some packets: the client did not receive any
response from the server, even though the trivial
network service was supposed to send TCP packets
with the SYN and ACK flags set in response, or at
least with the RST flag set to refuse the connection.

C. Experiment 3: NAT device

In this experiment we modify Er to provide address
translation between the two subnets. We configure Ec

to send five UDP packets with a random payload to a
closed port on Es. After we run the experiment, from
the client’s perspective, we observe the following:
• All UDP packets reached the server’s machine

successfully: Ec received five He messages which
contained the packets.

• Server’s machine responded to the requests with
ICMP Port Unreachable messages: Ec captured five
ICMP error messages that contained the original
UDP datagrams that caused the error.

• There is NAT device between Ec and Es, that
operates at the network and transport layers: the
packets included in the received He messages had
a different source IP address and a different source
port number than the originals.

• The NAT device handles ICMP error messages
correctly: source IP addresses, source port numbers,
and checksums found in the datagrams encapsulated
inside ICMP messages were altered accordingly by
the NAT device. Even when we performed a second
experiment where we instructed Ec to set the UDP
checksum to zero, the NAT device behaved correctly
and did not attempt to recompute checksums.

D. Experiment 4: HTTP caching proxy

In this experiment we replace the Er device running
GNU/Linux with a machine Ep that runs an ISA Server
2006 on a Microsoft Windows 2003 Server system. Ep is
configured to act as a transparent HTTP caching proxy.
We configure Ec to send 10 TCP packets with the SYN
flag set. Half of the packets are destined to port 80
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(HTTP) and the other half to port 22 (SSH). Additionally,
at the server side, we set up a network service that
accepts connections on port 80 and port 22. After we run
the experiment, from the client’s perspective, we observe
the following:
• All TCP packets destined to port 22 reached the

server: Ec received five He messages which con-
tained such packets.

• None of the packets destined to port 80 reached the
server: Ec did not receive He messages for those
packets.

• Server’s machine responded to all port 22 requests:
Ec captured five TCP packets with the SYN-ACK
flags set and source port 22.

• Some intermediate device forged a response to one
of the packets destined to port 80: Ec captured a
valid response to the first TCP packet (SYN-ACK
flags and proper acknowledgment number) but such
response presented significant differences with the
packets received from port 22, what suggests that
such responses were produced by two different end
systems. In particular, responses from port 22 had a
TTL value of 63, an IP Identification value of zero,
and a TCP window size of 14600 bytes, while the
response from port 80 had a TTL value of 128, non-
zero IP Identification values and a TCP window size
of 16384.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel technique
for the detection of intermediate devices in the path
between two end nodes. We have suggested a client/
server approach where the client, assisted by the server,
gets access to two versions of the same network packet:
the one generated by the sender, and the packet that
was actually received at the other end. The analysis of
the differences between those two packets allows the
detection of middleboxes that produced alterations to
the packets that traversed them, without requiring their
explicit cooperation.

We have not only presented the general outline of
the technique, but a complete design of a protocol that
achieves our goals. We have analyzed its main problems
and security concerns, and provided solutions to mitigate
them. We also demonstrated the flexibility of the protocol
and suggested many different applications and usage
scenarios. It must be noted that the theoretical concepts
that were introduced in this document are backed up by
an actual implementation, the Nping tool, which is freely
available under an open source license [13]. Anyone may
download the application and test the client side against
a publicly accessible instance of the echo server located
at echo.nmap.org.

However, neither the protocol nor the implementation
are fully complete. Our proposal should be considered

an initial approach to the problem since there are several
issues that have been left out of the scope of this paper.
First of all, effort must be put in the creation of a database
of middlebox models to assist clients in the identification
of particular intermediate device types. Secondly, in our
protocol, the role of the sender is always assumed by
the client side. This limits the ability to detect devices
that alter flows in the opposite direction (server to
client). Allowing clients and servers to exchange their
roles dynamically would improve the overall detection
capabilities of the system. Finally, there is certainly room
for improvement in the way our implementation handles
application layer sessions. Its inability to establish full
TCP connections limits the types of middleboxes that
can be detected. However, this an area we are working
on so we expect to offer such functionality in the near
future.
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