

Luis MartinGarcia luis@luismg.com June 2016 **SDN, NFV and Cloud** An Overview of Current Trends in the Networking Industry

Table of Contents

Software-Defined Networking

Network Function Virtualisation

Cloud Environments

Use Cases and Technologies

SDN

Software Defined Networking

What is SDN really trying to solve?

Two Main Issues

- Networks are Device-Centric.
- Network Devices are Hard to Configure

Networks are Device-Centric

- Routers Today...
 - Compute routes in CPU (RIB)
 - Push best route to the hardware (FIB)
 - Switch packets very fast based on destination address

Networks are Device-Centric

- Routers Today...
 - Every device has its own view of the network
 - Every device makes an independent forwarding decision

Networks are Device-Centric

PROs

- Scale very well (BGP)
- Are self-healing
- Are reliable and predictable

CONs

- Narrow hop-by-hop view
- Uncertainty beyond next hop
- Multiple levels of reconvergence
- All decisions based on "Destination IP"
- Very difficult to take into account other info
- Only fixed, non-adaptive metrics
- Difficult to extend or enhance
- In general, very hard to innovate

Devices are Hard to Configure

- Network Devices Today...
 - Networks are configured device by device
 - Configuration is manual
 - Configuration via Command-Line Interface (CLI)
 - Hard to keep configuration consistent
 - Hard to maintain software version consistency

Devices are Hard to Configure

- Network Devices Today...
 - Very difficult to automate
 - Lack of proper APIs and interfaces
 - Existing config mechanisms very hard to consume by software
 - SNMP is very "Read" oriented, hard to configure things
 - CLI inconsistent across software versions
 - NMS tools forced to use telnet & screen scraping
 - ⊳ Ugly
 - Inefficient
 - Error prone

POSSIBLE SOLUTIONS

How are we solving the problem?

Software-Defined Networking

- What is it?
 - The latest cool thing in the networking industry
 - "SDN is a new approach to designing, building, and managing networks that separates the network's control (brains) and forwarding (muscle) planes to better optimize each".

Why Separate Both?

- Faster Innovation
 - Control logic is not tied to hardware.
 - ▶ HW and SW evolve independently.
- Network-wide View
 - Easier to observe the network and make decisions.
- Flexibility
 - If the HW manufacturer doesn't want to implement the features I need, I can do it myself.

Common Operations Available

Configuration

Pull or push configuration to the device

Statistics

- Obtain real-time statistics
- Notice relevant events on the network
- Polling devices / Async Notifications

Traffic

- Divert or copy packets to the controller
- Inject or re-inject (same or different interface)
- Drop

SDN Deployment Modes

2. NFV

Network Function Virtualisation

Why do we need Network Function Virtualisation?

Two Main Issues

- Devices are heterogeneous and expensive.
- Devices are hard and slow to deploy.

Heterogenous and **Expensive Devices**

Heterogeneous

- Different vendors.
- Different form factors.
- Different deployment models.

Expensive

- Vendors charge a premium for their specialpurpose hardware.
- The fact that they are "physical" products increases cost per se.

Devices are Hard and Slow to Deploy

- New Services often require...
 - Racking new devices.
 - Laying out new cabling.
 - Performing initial config manually.
- Work at the Datacenter...
 - Requires physical presence.
 - Qualified Engineers (different profiles)
 - Security & Safety procedures.
 - Maintenance windows.

POSSIBLE SOLUTION

How are we solving the problem?

Separate Function from Hardware

- Run network functions in commodity HW
 - Network functions implemented in Software.
 - Running on top of standard x86 platforms.
 - As Virtual Machines
 - Inside containers
 - Directly on the baremetal
- Applicable for a number of functions
 - Firewalls, IDS, Routers, Load Balancers, Proxies...

Virtual Network Functions

PROs

- Homogenous Datacenter
- No need to deploy physically everytime.
- SW is generally cheaper than HW
- Faster to deploy new devices
- Cheaper redundancy
- Easier multi-tenancy

CONs

- Performance limitations
- More complex traffic flows
- Harder to implement security controls

NFV Architecture

3. Cloud

Public, Private & Hybrid Cloud Environments

What do we need the Cloud for?

Two Main Issues

- Deploying IT services is difficult and slow.
- The cost of IT doesn't necessarily match the growth of the business.

IT is Difficult and Slow

- Professional IT is complex
 - Requires highly skilled engineers, not always available.
 - In mature companies, there are a lot of politics involved (different departments, responsibilities, etc).
- Markets change faster than ever
 - Need to put new services on the market faster than the local IT can handle.

Cost of IT scales differently

- Big investments upfront
 - IT infrastructure is expensive and must be paid.
 upfront, even when there is zero revenue.
 - Scaling up when there is growth is slow.
 - Scaling down is almost impossible.
 - Environment is always either overprovisioned or underprovisioned.
- IT needs to be more agile
 - Need to grow and shrink dynamically as needed.
 - Pay as you grow.

POSSIBLE SOLUTION

How are we solving the problem?

Cloud Environments

- Run my IT on someone else's infrastructure
 - Rely on specialised companies to provide the IT infrastructure needed.
 - Rely on their know-how.
 - Rely on their 24/7 support services.
 - Concentrate on business applications, not the rest of the stack.
 - ▷ Pay IT as an utility bill.

Cloud Offerings

4. Use Cases

Use Cases and Real-life Technologies

Programmable Forwarding: OpenFlow

Programmable Forwarding: OpenFlow

Experiment in Production

Traffic Steering

Traffic Steering

IXP Enhancements

WAN Optimisation

VMWare NSX

Cloud Orchestration

Whitebox Networking

Other Tendencies

- Flow Visualization
- Self-Configuring Networks
- Self-Optimizing Networks
- Network abstractions closer to the application
- Convergence to Ethernet end-to-end.
- Network Engineering teams bringing in SW Developers.
- Industry creating the standards, not the IETF.

Thanks!

Questions?

Special thanks to the following individuals and organizations that made their templates, pictures and icons available under open licenses:

- Presentation template by <u>SlidesCarnival</u>
- Network Diagram Icons by <u>Cisco Systems</u>
- ▶ Title Slide Icon by <u>FreePik</u>
- Datacenter Rack picture by <u>Clayton O'Neill</u>
- Miscellaneous Icons (video, email...) by <u>Google</u>

Luis MartinGarcia luis@luismg.com June 2016

SDN, NFV and Cloud An Overview of Current Trends in the Networking Industry